TY - JOUR A1 - Dutschke, Andreas A1 - Seeger, Stefan A1 - Kurth, Lutz A1 - Panne, Ulrich A1 - Lohrer, Christian T1 - Emissions of reaction products and sound from outdoor and indoor firework displays T2 - Journal of pyrotechnics N2 - This work presents results of investigations towards the emission of chemical reaction products and sound pressure during an outdoor and an indoor firework display. Potentially harmful and toxic gases, and aerosols, were measured as well as sound pressures. Aerosols were measured with a Differential Mobility Analyzer (DMA) as well as a Laser Particle Counter. The focus was on particles with diameters between 11 nm and 20 µm. A transportable Fourier Transform Infrared (FTIR) spectroscopy detector registered the concentrations of emitted reaction gases, simultaneously. During the outdoor firework display, peak particle concentrations of >550000 particles cm-3, equivalent to a mass concentration of approximately 3.95 mg m-3, were detected, revealing a concentration maximum at approximately 175 nm particle diameter. The time-averaged particle mass concentration did not exceed 1.58 mg m-3 over 15 minutes. Due to the large distances (110 m) to the firing points, no significant harmful or toxic gas concentrations were measured during the entire firework display. In contrast, concentrations of sulphur dioxide (SO2) rose after an indoor firework display in a large event hall. On two days, more than 23000 particles cm-3 (which equates to a mass concentration of approximately 0.41 mg m-3) were detected when the hall ventilation was turned off, and more than 11000 particles cm-3 (which equates to a mass concentration of approximately 1.18 mg m-3) when the hall ventilation was activated. Concentration maxima appeared at approximately 300 nm particle diameter. The time-averaged particle concentrations in this case did not exceed 0.56 mg m-3 (over 15 minutes). CY - Whitewater, Colo. KW - Pyrotechnic articles KW - Aerosols KW - Combustion gases PY - 2009 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/20796 AN - OPUS4-20796 SN - 1082-3999 IS - 28 SP - 78 EP - 93 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany