TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schweitzer, T. A1 - Strangfeld, Christoph T1 - Enhancing the spectral signatures of ultrasonic fluidic transducer pulses for improved time-of-flight measurements JF - Ultrasonics N2 - Air-coupled ultrasonic (ACU) testing has proven to be a valuable method for increasing the speed in non-destructive ultrasonic testing and the investigation of sensitive specimens. A major obstacle to implementing ACU methods is the significant signal power loss at the air–specimen and transducer–air interfaces. The loss between transducer and air can be eliminated by using recently developed fluidic transducers. These transducers use pressurized air and a natural flow instability to generate high sound power signals. Due to this self-excited flow instability, the individual pulses are dissimilar in length, amplitude, and phase. These amplitude and angle modulated pulses offer the great opportunity to further increase the signal-to-noise ratio with pulse compression methods. In practice, multi-input multi-output (MIMO) setups reduce the time required to scan the specimen surface, but demand high pulse discriminability. By applying envelope removal techniques to the individual pulses, the pulse discriminability is increased allowing only the remaining phase information to be targeted for analysis. Finally, semi-synthetic experiments are presented to verify the applicability of the envelope removal method and highlight the suitability of the fluidic transducer for MIMO setups. KW - Air-coupled ultrasound KW - Fluidics KW - Signal processing KW - Pulse compression KW - MIMO KW - Hilbert transform PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537853 DO - https://doi.org/10.1016/j.ultras.2021.106612 SN - 0041-624X VL - 119 SP - 1 EP - 12 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-53785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -