TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone T1 - Adhesion promotion of thick fire-retardant melamine polymer dip-coatings at polyolefin surfaces by using plasma polymers JF - Journal of adhesion science and technology N2 - Melamine and melamine resins are widely used as fire retardants for polymer materials used in pharmaceutical, plastic, textile, rubber, and construction industry. Melamine-based flame retardants act by blowing off intumescent layers, char formation, and emission of quenching ammonia gas and diluent molecular nitrogen. Special advantages are: low cost, low smoke density and toxicity, low corrosive activity, safe handling, and environmental friendliness. Methylated poly(melamine-co-formaldehyde) (mPMF) was used as thick (≥40 µm) fire-retardant coating for plasma pretreated polymers. A combined low-pressure plasma pretreatment consisting of oxygen plasma exposure followed by deposition of thin poly(allylamine) (ppAAm) and poly(allyl alcohol) (ppAAl) plasma polymers as adhesion promoters have improved the adhesion of thick mPMF coatings strongly. Chemical structure and composition of deposited polymer films were characterized by infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). After peeling, the peeled layer surfaces were also investigated for identification of the locus of failure and their topography using optical microscopy and XPS. Often the adhesion promotion was so efficient that the peeling of coating was not possible. Thermal properties of plasma polymers and dip-coating films were analyzed by thermogravimetric analysis. Significant improvement of fire-retardant properties of coated polymers was confirmed by flame tests. KW - Adhesion KW - Thick melamine layers KW - Plasma polymerization KW - Dip-coating KW - Methylated poly(melamine-co-formaldehyde) KW - Polystyrene KW - Polyethylene KW - Flame retardancy KW - Fire retardant KW - Melamine resin KW - Polymer KW - Plasma PY - 2014 DO - https://doi.org/10.1080/01694243.2014.943339 SN - 0169-4243 SN - 1568-5616 VL - 28 IS - 21 SP - 2113 EP - 2132 PB - VNU Science Press CY - Utrecht AN - OPUS4-31485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -