TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Dong, K. A1 - Manke, I. T1 - Tomographic Imaging of Battery Materials at BAMline (Bessy II) N2 - Different scientific questions in battery research can be addressed by synchrotron X-Ray imaging. The BAMline at the 3rd generation synchrotron X-ray source BESSY II has been supporting researchers in a wide range of research areas for over 20 years. Being a non-destructive characterization method, synchrotron X-ray imaging, in particular tomography (SXCT), plays a particularly important role in structural characterization. This poster gives few examples from battery research conducted at BAMline. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. The upgraded dual multilayer monochromator offers flexibility by providing different energy spectra to optimize flux and energy resolution as desired. The upgraded detector (in white beam configuration, equipped with an sCMOS camera) allows the higher flux to be exploited with reduced readout times. Shorter tomographic acquisition times in the range of seconds are now possible. Hence, in-situ and operando examinations are routinely available. An integrated slip ring allows continuous rotation of the sample stage for ease of wiring. The pink beam option allows tomographic observation of processes occurring in the time domain of a few seconds with a resolution down to ~ 1 µm. The in-situ capabilities include electrochemical cycling, mechanical load (tension and compression) and heating up to 1100°C. Ergebnisse The method, equipment, data handling pipeline as well as various examples from battery research conducted at BAMline are presented and discussed. In particular, the 3D morphology and distribution of deposited Li within the widely used Celgard® 2325 polyolefin separator are visualized in situ, thus promoting the understanding of the short-circuiting process of Li metal batteries. In addition, we also visualized and quantified the spatial distribution of Li depositions inside a porous carbon host to unravel the deposition behavior that can hardly be probed by surface imaging techniques. The Li electrodeposition behavior found here could help to promote the understanding and development of surface modifications related to Li anodes, separators as well as novel 3D geometry electrode designs for accommodation of Li depositions and alleviation of volumetric changes. T2 - Batterieforum Deutschland CY - Berlin, Germany DA - 18.01.2023 KW - BAMline KW - X-ray tomography KW - Li-ion battery PY - 2023 AN - OPUS4-56909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -