TY - JOUR A1 - Kricheldorf, H.R. A1 - Rabenstein, M. A1 - Langanke, D. A1 - Schwarz, G. A1 - Schmidt, M. A1 - Maskos, M. A1 - Krüger, Ralph-Peter T1 - Ring-closing polycondensations JF - High performance polymers N2 - The role of cyclization in polycondensations is discussed for two different scenarios: thermodynamically-controlled polycondensation (TCPs) on the one hand and kinetically-controlled polycondensations (KCPs) on the other. The classical Carothers–Flory theory of step-growth polymerization does not include cyclization reactions. However, TCPs involve the formation of cycles via ‘back-biting degradation’, and when the ring–chain equilibrium is on the side of the cycles the main reaction products of the TCP will be cyclic oligomers. Two groups of examples are discussed: polycondensations of salicyclic acid derivatives (e.g. aspirin) and polycondensations of dibutyltin derivatives with long {alpha}-, {omega}-diols or dicarboxylic acids. Furthermore, various kinetically-controlled syntheses of polyesters and polyamides were studied and carefully optimized in the direction of high molecular weights. High fractions of cyclic oligomers and polymers were found by MALDI-TOF mass spectrometry, and their fractions increased with optimization of the process for molecular weight. These results disagree with the Carothers–Flory theory but agree with the theoretical background of the Ruggli–Ziegler dilution method (RZDM). When poly(ether-sulfone)s were prepared from 4,4'-difluorodiphenylsulfone and silylated bisphenol-A two different scenarios were found. With CsF as catalyst at a temperature of more than 145°C cyclic oligoethers were formed under thermodynamic control. When the polycondensation was promoted with K2CO3 in N-methylpyrolidone at ?145°C the formation of cyclic oligoethers and polyethers occurred under kinetic control. A new mathematical formula is presented correlating the average degree of polymerization with the conversion and taking into account the competition between cyclization and propagation. PY - 2001 DO - https://doi.org/10.1088/0954-0083/13/2/312 SN - 0954-0083 SN - 1361-6412 VL - 13 SP - S123 EP - S136 PB - Sage Publ. CY - London AN - OPUS4-2178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -