TY - JOUR A1 - Lak, A. A1 - Thünemann, Andreas A1 - Schilling, M. A1 - Ludwig, F. T1 - Resolving particle size modality in bi-modal iron oxide nanoparticle suspensions JF - Journal of magnetism and magnetic materials N2 - Particle size modality in bi-modal iron oxide suspensions was resolved by exploiting complex ac-susceptibility (ACS), small angle X-ray scattering (SAXS) and photon cross-correlation spectroscopy. To explain dynamic magnetic response of bi-modal suspensions, the Debye model was expanded to a linear superposition form allowing for the contribution of both particle fractions. This modified and adopted model is able to resolve the bi-modal particle size distributions. The SAXS curves of mono- and bi-modal suspensions were fitted well using a Monte Carlo simulation scheme, allowing the detection of bi-modal particle size distributions with high precision. KW - Iron oxide nanoparticle KW - Bi-modal size distribution characterization KW - Complex ac-susceptibility KW - Small angle X-ray scattering KW - Modeling KW - Nanotechnology KW - SAXS KW - Nanoparticles PY - 2015 DO - https://doi.org/10.1016/j.jmmm.2014.08.050 SN - 0304-8853 VL - 380 SP - 140 EP - 143 PB - Elsevier CY - Amsterdam AN - OPUS4-32563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -