TY - CONF A1 - Hiller, Th. A1 - Costabel, S. A1 - Müller-Petke, M. A1 - Kruschwitz, Sabine T1 - Evaluation of different laboratory NMR devices in a tripartite round robin test N2 - Nuclear magnetic resonance (NMR) is a well established laboratory / borehole method to characterize the storage and transport properties of rocks due to its direct sensitivity to the corresponding pore fluid saturation (water or oil) and pore sizes. For petrophysical applications there are several different NMR laboratory devices commercially available varying over a wide range of e.g. magnetic field strength / frequency (2 MHz to 30 MHz), applicable measurement protocols (T1, T2, T1-T2, T2-D, etc.) and sample sizes (2.5 cm to 10 cm in diameter). In this work we present NMR measurements, layed out in a round robin like manner, on a set of 20 sandstone samples. We use three different NMR devices containing two standard setups with homogenous magnetic fields (LIAG and RWTH) and one single-sided setup with gradient field (BGR) to measure T1 and T2 relaxation data. In our evaluation we especially focus on the comparison of the individually inverted relaxation time distributions to quantify the differences arising from different laboratory setups. Diverging results can be deduced on the one hand to the inherit differences between homogeneous and gradient fields but on the other hand also due to quality differences between the two homogeneous setups. Additionally, we also examine the influence of the individually chosen inversion parameters (signal processing, distribution sampling points, error weighting, regularization, etc.) to establish a general standardized best practice recommendation for future petrophysical NMR laboratory measurements. T2 - 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Potsdam, Germany DA - 27.03.2017 KW - Nuclear Magnetic Resonance KW - Sandstone PY - 2017 AN - OPUS4-43244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -