TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Peetz, Christoph A1 - Kratzig, Andreas A1 - Bettge, Dirk T1 - Acid condensation in pipeline transportation of impure CO2 N2 - CCS technology - Carbon Dioxide Capture and Storage, has been recognized as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost effectiveness currently hinder the future of CCS. Recent studies have shown that even at a very low concentration of impurities (less than 100 ppmV of SO2, NO2, O2 and H2O) the droplet formation and condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable [1-3].To reveal the mechanism of droplet corrosion in dense CO2 at high pressure and low temperature, further studies on factors that affect wettability and resulting corrosion behaviors of transport pipeline steels are needed. In this work, carbon steel 1.8977 (L485MB), CrMo-alloyed steel 1.7225 (42CrMo4), martensitic steel 1.4313, and superaustenite steel 1.4562 (alloy 31) were investigated. The wettability was determined by contact angle measurement of sessile drop in CO2 atmosphere, at different pressure and temperature. The corrosion behavior of steels was investigated with standard exposure tests, followed by mass loss determination, surface characterization by scanning electron microscope (SEM) and chemical analysis by Energy Dispersive X-Ray Analysis (EDX). Exposure tests with and without the synthetic CO2 saturated water droplets were performed at both low temperature (278 K) and higher temperatures (288 K and 313 K) at high pressure where CO2 is supercritical or in dense phase. The investigated flue gases were SO2 (70-220 ppmV) and O2 (6700 ppmV) and water (50-200 ppmV). To reveal the effects of surface morphology, carbon steel coupons with different surface roughness were prepared to expose to CO2 stream containing oxidizing/reducing impurities to observe the condensation and the corrosion process that followed. T2 - 2. Jahrestagung der Fachgruppe Chemie und Energie CY - Müllheim (Ruhr), Germany DA - 30.09.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 AN - OPUS4-46188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -