TY - CONF A1 - Sergeeva-Chollet, N. A1 - Decitre, J.-M. A1 - Fermon, C. A1 - Pelkner, Matthias A1 - Reimund, Verena A1 - Kreutzbruck, Marc ED - Chimenti, D.E. ED - Bond, L.J. ED - Thompson, D.O. T1 - Development of eddy current probes based on magnetoresistive sensors arrays T2 - 40th Annual review of progress in quantitative nondestructive evaluation (Proceedings) N2 - Eddy Current Technique is a powerful method for detection of surface notches and of buried flaws during inspection of metallic parts. Recent EC array probes have demonstrated a fast and efficient control of large surfaces. Nevertheless, when the size of flaws decreases or the defect is rather deep, traditional winding coil probes turn out to be useless. Magnetoresistive sensors present the advantages of flat frequency response and micron size. These sensors are hence very attractive for the detection of buried defects that require low frequencies because of skin depth effect. An optimization of the probe with magnetoresistive sensors as receivers has been made by simulations using CIVA software and finite elements methods with OPERA. EC probes for buried flaw detection have been designed. Experimental results have been compared with simulations. T2 - 40th Annual review of progress in quantitative nondestructive evaluation CY - Baltimore, Maryland, USA DA - 2013-07-21 KW - Eddy current KW - Magnetic sensor PY - 2014 SN - 978-0-7354-1212-5 SN - 978-0-7354-1211-8 DO - https://doi.org/10.1063/1.4864981 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1581 33B SP - 1374 EP - 1379 PB - AIP Publishing AN - OPUS4-31279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -