TY - GEN A1 - Rhode, Michael T1 - Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc N2 - In order to satisfy the growing requirements towards lightweight design and resource efficiency in modern steel constructions, e.g. mobile cranes and bridges, high-strength steels with typical yield strength ≥ 690 MPa are coming into use to an increasing extent. However, these steels require special treatment in welding. The susceptibility for degradation of the mechanical properties in presence of hydrogen increases significantly with increasing yield strength. In case of missing knowledge about how and which amount of hydrogen is uptaken during welding, hydrogen assisted cracking (HAC) can be a negative consequence. Moreover, modern weld technology like the modified spray arc process enables welding of narrower weld seams. In this context, a reduced number of weld beads, volume and total heat input are technical and economic benefits. This work presents the influence of welding parameters on the diffusible hydrogen content in both singlepass and multi-layer welds. Different hydrogen concentrations were detected by varied contact tube distance, wire feed speed, arc length as well as varied arc type (transitional arc and modified spray arc). The results show, that all welding parameters have significant influence on the diffusible hydrogen concentration in the single-pass welds. By increasing the number of weld beads in case of multi-layer welding, the hydrogen concentration have been substantially reduced. Whereby, differences in hydrogen concentrations between both arc types are present. T2 - 70th IIW Annual Assembly, Commission II-A CY - Shanghai, People's Republic of China DA - 25.06.2017 KW - Hydrogen KW - MAG Welding KW - High-strength steels KW - Process parameters PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/40953 AN - OPUS4-40953 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany