TY - GEN A1 - Jaunich, Matthias T1 - Use of rubber seals at low temperatures N2 - Rubber is widely used as sealing material in various applications. In many fields the function of seal materials at low temperatures is necessary. Therefore, the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly temperature dependent. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling, due to the glass transition the material changes from rubber-like entropy-elastic behaviour to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Hence, rubbers are normally used above their glass transition. But as the minimum working temperature limit of elastomers cannot be defined globally and precisely, the lower operation temperature limit of rubber seals should be determined in dependence of the application conditions and the most relevant material properties. In this paper, wesummarize results of our temperature dependent investigation of seal material properties by classical thermal analysis as Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA), combined with measurements of standardized tests as compression set and the seal performance determined in component tests. To reduce the test time of compression set tests a faster technique was developed and applied. To study the influence of dynamic events on the seal performance and to enhance the understanding of occurring seal failure, a setup for a fast partial seal release was designed. T2 - RubberCon 2016 CY - Tampere, Finland DA - 08.06.2016 KW - O-Ring KW - Compression set KW - Leakage rate KW - Low temperature PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/36514 AN - OPUS4-36514 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany