TY - JOUR A1 - Hempel, M. A1 - Ziegler, Mathias A1 - Tomm, J.W. A1 - Elsaesser, T. A1 - Michel, N. A1 - Krakowski, M. T1 - Time-resolved analysis of catastrophic optical damage in 975 nm emitting diode lasers JF - Applied physics letters N2 - Catastrophic optical damage (COD) is analyzed during single current pulse excitation of 975 nm emitting diode lasers. Power transients and thermal images are monitored during each pulse. The COD process is unambiguously related to the occurrence of a “thermal flash” of Planck’s radiation. We observe COD to ignite multiple times in subsequent pulses. Thermography allows for tracing a spatial motion of the COD site on the front facet of the devices. The time constant of power decay after the onset of COD has values from 400 to 2000 ns, i.e., an order of magnitude longer than observed for shorter-wavelength devices. KW - Semiconductor laser KW - Thermography KW - Catastrophic optical damage KW - High-power diode lasers PY - 2010 DO - https://doi.org/10.1063/1.3456388 SN - 0003-6951 SN - 1077-3118 VL - 96 IS - 251105 SP - 1 EP - 3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -