TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil T2 - Soil Dynamics and Earthquake Engineering N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. PB - Elsevier Ltd. CY - London KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/52006 AN - OPUS4-52006 SN - 0267-7261 VL - 140 SP - 106438 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany