TY - JOUR A1 - Felbeck, T. A1 - Lezhnina, M.M. A1 - Resch-Genger, Ute A1 - Kynast, U.H. T1 - Red emissive nanoclay hybrids in transparent aqueous dispersion-towards optical applications in biophotonics JF - Journal of luminescence N2 - Hydrophobic guest molecules like organic dyes and metal–ion complexes can be introduced into aqueous media via adsorption onto inorganic nanoclay host materials such as nm-sized laponite. Dispersions of these organic–inorganic hybrid materials show several advantageous properties like minimum light scattering due to their small size in the nanometer regime, ease of modification, low cost, low toxicity, and long-term stability, making them perfect candidates as signaling units and optically active materials in photonics and biotechnology. In this study, we summarize first findings on the easy-to-make, but chemically and optically fairly complex behavior of nanoclay hybrids for biotechnological applications. The latter includes the preparation of nanomaterials, which are colloidally stable in buffers and in the presence of biomolecules like proteins, and methods to control their surface chemistry. For this purpose, we used two red emitting fluorophores, the small organic dye Nile Red and the rare earth complex Eu(ttfa)3(topo)2, and evaluated the interaction of the red nanoclay hybrids with two model proteins, bovine serum albumin and β-lactoglobulin. We were able to monitor the formation of the protein corona around these hybrids using absorption and luminescence spectroscopy. KW - Nile Red KW - Europium complex KW - Protein corona KW - Nanoclay hybrids KW - Polarity probe PY - 2016 DO - https://doi.org/10.1016/j.jlumin.2014.11.039 SN - 0022-2313 SN - 1872-7883 VL - 169 SP - 728 EP - 732 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-33817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -