TY - GEN A1 - Keller, Julia T1 - Electrochemistry coupled with LC/MS for production and characterization of mycotoxin oxidation products N2 - Mycotoxins cause a variety of mold-related health risks which makes it necessary to further examine their metabolic pathways in human and other mammals. Beside standard in vitro assays with liver cell microsomes an increasing interest in new and rapid simulation techniques are playing a growing role in mycotoxin research. Herein, the coupling of electrochemistry with liquid chromatography and mass spectrometry (EC/LC/MS) is presented as fast and simple method to investigate the oxidative fate of mycotoxins. For this case study, two food relevant mycotoxins (zearalenone and citrinin) were selected. Experiments were performed by using an electrochemical flow through cell integrated in the flow path of the autosampler of the chromatographic system. The reaction mixture was separated by a RP-C18 column and analyzed by a single quadrupole MS (Figure 1). Oxidation products were generated by applying potentials of 400, 800, 1200 and 1600 mV vs Pd/H2 using a glassy carbon working electrode. Different oxidation reactions like hydroxylation, dehydrogenation and dimerization lead to a diverse product pattern of the investigated mycotoxins. In a comparative study, electrochemical generated reaction products were compared with metabolites produced by human and rat liver microsomes in vitro. The obtained data show that EC/LC/MS is a versatile and promising tool in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - Tag der Chemie CY - Berlin, Germany DA - 03.07.2017 KW - Electrochemistry KW - Mycotoxins PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/42980 AN - OPUS4-42980 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany