TY - GEN A1 - Keller, Julia T1 - Simulating biotransformation reactions of citrinin by electrochemistry/mass spectrometry N2 - Mycotoxins can be found worldwide in food and feed and cause a variety of mold-related health risks which makes it necessary to further examine their metabolic fate in human and other mammals. Beside standard in vitro assays with liver cell preparations an increasing interest in new simulation methods are playing a growing role. The online coupling of electrochemistry with mass spectrometry (EC/MS) is one of these novel techniques, successfully applied in pharmacological and drug research for several years now. The primary objective of this study was to investigate the capability of EC/MS to elucidate metabolic pathways of the mycotoxin citrinin as relevant food contaminant. For this purpose, a coulometric flow through cell equipped with a glassy carbon working electrode was used by applying a ramped potential between 0 and 2 V vs Pd/H2. The electrochemically generated oxidation products analyzed by EC/MS were compared to those obtained from in vitro assays. To receive a comprehensive assessment of EC/MS other non-microsomal oxidation techniques such as Fenton-like reaction and UV irradiation were applied. Several hydroxylated derivatives of citrinin were generated by EC/MS and Fenton-like reaction which are similar to microsomal biotransformation products. These data show that EC/MS is a versatile tool that can be easily applied in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - ANAKON CY - Tübingen, Deutschland DA - 03.04.2017 KW - Electrochemistry KW - Citrinin KW - Mass spectrometry PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/39765 AN - OPUS4-39765 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany