TY - JOUR A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Hydroxylation and dimerization of zearalenone: comparison of chemical, enzymatic and electrochemical oxidation methods T2 - World Mycotoxin Journal N2 - Investigations of the metabolic pathway of mycotoxins by microsomal techniques are often laborious, causing an increasing demand for easy and rapid simulation methods. Thus, the non-microsomal oxidation technique of electrochemistry coupled online to mass spectrometry (EC/MS) was applied to simulate phase I biotransformation of the Fusarium mycotoxin zearalenone (ZEA). The obtained transformation products were identified by high resolution mass spectrometry (FT-ICR) and HPLC-MS/MS. Transformation products (TPs) from EC/MS were compared to those of other oxidative methods such as Fenton-like and Ce(IV) reactions and metabolites derived from in vitro assays (human and rat liver microsomes). Electrochemical oxidization of ZEA was achieved by applying a potential between 0 and 2,500 mV vs. Pd/H2 using a flow-through cell with a boron-doped diamond working electrode. Several mono-hydroxylated TPs were generated by EC/MS and Fenton-like reaction, which could also be found in microsomal in vitro assays. EC and Ce(IV) led to the formation of structurally different ZEA dimers and dimeric quinones probably connected over covalent biaryl C-C and C-O-C bonds. Although the dimerization of phenolic compounds is often observed in natural processes, ZEA dimers have not yet been reported. This is the first report on the formation of stable ZEA dimers and their related quinones. The tested non-microsomal methods, in particular EC/MS, could be useful in order to predict the biotransformation products of mycotoxins, even in cases where one to one simulation is not always feasible. PB - Wageningen Academic Publishers KW - Electrochemistry KW - Zearalenone KW - Dimer PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/43393 AN - OPUS4-43393 SN - 1875-0710 SN - 1875-0796 VL - 10 IS - 4 SP - 297 EP - 307 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany