TY - GEN A1 - Prager, Jens T1 - Efficient modelling of guided ultrasonic waves using the Scaled Boundary FEM towards SHM of composite pressure vessels N2 - The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that shows promising results in modelling of guided ultrasonic waves. Efficiency and low computational cost of the method are achieved by a discretisation of the boundary of a computational domain only, whereas for the domain itself the analytical solution is used. By means of the SBFEM different types of defects, e.g. cracks, pores, delamination, corrosion, integrated into a structure consisting of anisotropic and isotropic materials can be modelled. In this contribution, the SBFEM is used to analyse the propagation of guided waves in a structure consisting of an isotropic metal bonded to anisotropic carbon fibre reinforced material. The method allows appropriate wave types (modes) to be identified and to analyse their interaction with different defects. Results obtained are used to develop a structural health monitoring system for composite pressure vessels used in automotive and aerospace industries. T2 - 9th European Workshop on Structural Health Monitoring (EWSHM) CY - Manchester, UK DA - 10.07.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Finite Element Modelling KW - Composites PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/45486 AN - OPUS4-45486 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany