TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Jochems, Frank T1 - Compatibility of sealing materials with biofuels, biodiesel-heating oil blends and premium grade fuel at different temperatures T2 - EUROCORR 2014 - European corrosion congress N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester) represent an important renewable fuel alternative to petroleum-derived transport fuels. Increasing biofuel use would bring some benefits, such as a reduction in oil demands and greenhouse gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The question arises of whether sealing materials are resistant to fuels with bioethanol and biodiesel (rapeseed oil fatty acid methyl ester). The aim of this work is to study the interaction between sealing materials such as FKM (fluorocarbon rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), NBR (acrylonitrile-butadiene rubber), IIR (butyl rubber), VMQ (methyl-vinyl-silicone rubber), FVMQ (methyl-fluoro-silicone rubber) and PA (polyamide) and biofuels such as biodiesel (FAME, non-aged and 2 years aged), E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel, non-aged and one year aged) compared with premium-grade fuel at 20°C, 40°C and 70°C for 84 days. Exposure experiments were conducted with specimens of these elastomers to document the changes in the mass and tensile properties of these sealing materials. Visual examination of some test specimens clearly showed a great volume increase until breakage or partial dissolution. The sealing materials FVMQ, VMQ and PA were evaluated as resistant in E85 at 20°C and 40°C with a reduction of tensile properties limited to 15%. None of the examined materials was evaluated as resistant at 70°C with even fluorocarbon rubber losing 20% of its tensile strength in E85. When exposed to biodiesel, elastomers were affected in two ways: firstly, by absorption of liquid by the elastomers and, secondly, by dissolution of soluble components from the elastomers into the liquid medium. Swelling was the result of the high absorption by the elastomers CR, CSM, EPDM, IIR and NBR in comparison to their dis-solution in non-aged and two years aged biodiesel. FKM, VMQ and PA were evaluated as resistant sealing materials in non-aged biodiesel at 40°C. FKM was still resistant in aged biodiesel at 40°C but only to a limited degree at 70°C. The sealing materials CR, CSM, EPDM, IIR, NBR and VMQ were damaged to a high extent in non-aged and one year aged B10 as a result of swelling up to 70°C. FVMQ and PA can be evaluated as resistant in non-aged and one year aged B10 at 20°C and 40°C. However, FKM was evaluated as resistant up to 70°C. The exposure tests showed that all the elastomers tested were resistant in the premium-grade fuel Super at 20°C. On increasing the temperature to 40°C, only FKM, VMQ and PA were resistant to Super. At 70°C FKM showed the best resistance. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Compatibility KW - Sealing materials KW - Biofuels KW - Mass loss KW - Change in tensile properties PY - 2014 SN - 978-3-89746-159-8 SP - 1 EP - 13 AN - OPUS4-31427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -