TY - JOUR A1 - Bause, F. A1 - Gravenkamp, Hauke A1 - Rautenberg, J. A1 - Henning, B. T1 - Transient modeling of ultrasonic guided waves in circular viscoelastic waveguides for inverse material characterization JF - Measurement science and technology N2 - In this contribution, we present an efficient approach for the transient and time-causal modeling of guided waves in viscoelastic cylindrical waveguides in the context of ultrasonic material characterization. We use the scaled boundary finite element method (SBFEM) for efficient computation of the phase velocity dispersion. Regarding the viscoelastic behavior of the materials under consideration, we propose a decomposition approach that considers the real-valued frequency dependence of the (visco-)elastic moduli and, separately, of their attenuation. The modal expansion approach is utilized to take the transmitting and receiving transducers into account and to propagate the excited waveguide modes through a waveguide of finite length. The effectiveness of the proposed simulation model is shown by comparison with a standard transient FEM simulation as well as simulation results based on the exact solution of the complex-valued viscoelastic guided wave problem. Two material models are discussed, namely the fractional Zener model and the anti-Zener model; we re-interpret the latter in terms of the Rayleigh damping model. Measurements are taken on a polypropylene sample and the proposed transient simulation model is used for inverse material characterization. The extracted material properties may then be used in computer-aided design of ultrasonic systems. KW - Viscoelasticity KW - Ultrasonics KW - Guided waves KW - Inverse problem KW - Scaled boundary finite KW - Element method PY - 2015 DO - https://doi.org/10.1088/0957-0233/26/9/095602 SN - 0957-0233 SN - 1361-6501 VL - 26 IS - 9 SP - 095602-1 EP - 095602-17 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-33830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -