TY - JOUR A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf A1 - Zietka, S. A1 - Reinsch, Stefan T1 - Kinetic fragility of hydrous soda-lime-silica glasses T2 - Journal of non-crystalline solids N2 - The effect of hydration on the kinetic fragility of soda-lime-silica glasses was investigated by viscometry in the glass transition range. Water-bearing glasses were prepared from industrial float glass (FG) and a ternary model glass (NCS = 16Na2O 10CaO 74SiO2 in mol%) by bubbling steam through the melt at 1480 °C and up to 7 bar. Additionally, a sodium borosilicate glass (NBS = 16Na2O 10B2O3 74SiO2 in mol%) was hydrated under equal conditions. As detected by infrared spectroscopy water dissolves in the glasses exclusively as OH-groups. The hydration resulted in a total water content CW up to ~ 0.2 wt% for FG, NCS and NBS glasses. Kinetic fragility, expressed by the steepness index m, was determined from the temperature dependence of η at the glass transition. Viscosity data from previous studies on hydrous float glasses (CW > 1 wt%) were surveyed together with literature data on the (H2O)–Na2O–CaO–SiO2, (H2O)–Na2O–SiO2 and (H2O)–SiO2 systems to expand the range of water concentration and bulk composition. We could demonstrate that m decreases for all glasses although water is dissolved as OH and should depolymerize the network. An empirical equation of the general type m = a - b logCW where a, b are fitting parameters, enables m to be predicted, for each glass series as function of the water content CW. The enlarged data base shows that the parameter B of the Arrhenius viscosity-temperature relation decreases much stronger than the isokom temperature at the glass transition. PB - North-Holland Publ. Co. CY - Amsterdam KW - Soda-lime-silica KW - Fragility KW - Viscosity KW - Water in glass PY - 2008 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/18187 AN - OPUS4-18187 SN - 0022-3093 VL - 354 IS - 42-44 SP - 4713 EP - 4718 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany