TY - CONF A1 - Serrano Munoz, Itziar A1 - Mouiya, Mossaab A1 - Prasek, Marco A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - High temperature in-situ heat treatment of a refractory material by means of synchrotron refraction radiography T2 - Proceedings of the 21st European Conference on Composite Materials N2 - The stress–strain behavior of certain ceramics, such as aluminum titanate (AT, Al2TiO5), has features that are unusual for brittle material. In particular, a substantial nonlinearity under uniaxial tension, and load–unload hysteresis caused by the increase of the incremental stiffness at the beginning of unloading. These features are observed experimentally and attributed to microcracking. In this study, we investigate the mechanical response of an AT material at room and high temperature. Microstructure and microcracking are analyzed by means of electron microscopy, and both synchrotron micro computed tomography (µCT) and refraction radiography (SXRR). Synchrotron refraction radiography is combined with in-situ heating at high-temperatures (up to 1400°C) to be able to monitor the relative closure of microcracks as a function of increasing/decreasing temperatures. T2 - ECCM21 CY - Nantes, France DA - 02.07.2024 KW - Refractory materials KW - Microcracking KW - Synchrotron µCT and refraction radiography KW - In-situ heating up to 1400°C PY - 2024 UR - https://gem.ec-nantes.fr/en/eccm21-proceedings/ SN - 978-2-912985-01-9 DO - https://doi.org/10.60691/yj56-np80 SP - 47 EP - 53 PB - The European Society for Composite Materials (ESCM) and the Ecole Centrale de Nantes. CY - Nantes AN - OPUS4-60581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -