TY - CONF A1 - Orellana Pérez, Teresa A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Zencker, Uwe T1 - Relevance of cladding failure mechanisms due to zirconium hydride precipitation under extended dry storage conditions in Germany T2 - Proceedings of the 2017 Water Reactor Fuel Performance Meeting N2 - The German nuclear waste management strategy consists of dry interim storage of spent fuel inside dual purpose casks and its subsequent direct final disposal in a deep geological repository. Interim storage is limited to 40 years so far, but will have to be extended until repository site selection and operation is concluded, potentially up to 100 years. In this context, research on the long term performance of safety relevant cask components and fuel rod integrity during such extended periods of time is of outmost importance. The barrier function of the fuel cladding depends on its integrity under operational and accidental conditions along with storage and subsequent transportation and is mainly affected over time by altering of the cladding microstructure and by thermo-mechanical conditions during reactor operation and subsequent wet and dry storage. This paper focuses on failure mechanisms regarding cladding embrittlement caused by physical phenomena concerning hydrogen dissolution and precipitation of hydrides in the zirconium matrix. Within this context, potential cladding integrity issues under extended interim storage conditions followed by transportation are emphasized. Delayed hydride cracking (DHC) is a well-known time-dependent temperature-activated phenomenon failure mechanism of the fuel cladding during reactor operation. The phenomenon consists of hydrogen diffusion and hydride precipitation at the tip of an initial crack and the propagation of the crack to an approximate distance equal to the length of the hydride. This failure mechanism is temperature-activated phenomenon and enhances along with thermal cycling of the fuel cladding, e. g. during reactor shutdowns. DHC shows limited relevance under quasi static storage conditions with continuously lowering temperatures. However, the literature points that DHC may occur when the temperature during storage decreases to a certain level after some decades and in combination with stress concentrations in the cladding material. When spent fuel is transferred to dry storage by vacuum drying, the cladding temperature raises up to peak temperatures of ~370°C. Under these conditions, hydrides dissolute into the zirconium matrix up to the solubility limit defined by the peak temperature and this amount of hydrogen can precipitate in a radial re-oriented fashion due to the temperature decrease during storage. Cladding materials with radially precipitated hydrides show significant embrittlement. Radially oriented hydrides are perpendicularly oriented to hoop stresses representing the most critical configuration. Brittle failure of the cladding then occurs by crack propagation through radially oriented hydrides and finally through the zirconium matrix. The susceptibility to radial hydride precipitation depends on cladding material type and microstructure, hydrogen content, pre-drying hydride distribution, irradiation conditions, and temperature and stress histories during drying and storage operations. This paper addresses major considerations concerning spent fuel cladding embrittlement due to hydride precipitation with regard to the boundary conditions of dry spent fuel storage in Germany. Analytical, numerical, and experimental approaches are to be discussed by BAM in order to identify the specific needs for future R&D work in that area with the purpose to provide the necessary data base for proper safety demonstration and evaluation along with future extended storage licensing procedures. T2 - 2017 Water Reactor Fuel Performance Meeting CY - Jeju, Korea DA - 10.09.2017 KW - Cladding KW - Hydride precipitation KW - Spent fuel PY - 2017 SP - 1 EP - 8 AN - OPUS4-44749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -