TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Zeise, Ingrid A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Imaging of nanoparticles in cells by LA-ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from therapeutic applications to nanotoxicology. The cellular uptake depends on the primary characteristics of the NPs (e.g. size, shape, surface modification) and on the cells interacting with the particles. Thereby the quantification of NPs in cells is of particular importance to obtain information under different experimental conditions. Presently, the number of NPs internalized is often determined by inductively coupled plasma (ICP) optical emission spectrometry (OES) or ICP mass spectrometry (MS) after acid digestion of a cell suspension or a cell pellet. The result is an average value and no information about the distribution among cells or within a cell is available. Therefore we developed a method based on laser ablation (LA) in combination with ICP-MS to localise and quantify metallic NPs in single cells. LA-ICP-MS is a powerful analytical method which offers excellent sensitivity at high spatial resolution and multielement capability without time-consuming sample preparation steps. Recently, LA-ICP-MS was established for elemental mapping of biological samples like tissues. In our experiments, fibroblast cells were incubated with gold or silver containing nanoparticles and grown on sterile coverslips under standard conditions. For LA analysis the cells were fixed with formaldehyde and dried. Subcellular resolution is achived by careful optimisation of laser energy, ablation frequency and scan speed. The elemental distribution was determined by continuous ablation line by line of cells incubated with NPs. Our results show that LA-ICP-MS is able to detect NP aggregates within cellular substructures. After 24 h of incubation the NPs were found in the cytosol, preferencially in the perinuclear region, but do not enter the nucleus. Additionally, a quantification strategy at single-cell level was developed. For this purpose nitrocellulose membrane was spiked with Ag or Au nanoparticle suspension at different concentration levels and analysed by LA-ICP-MS. Based on this calibration the number of NPs taken up by individual cells was determined and variations within the cell population become visible. The cells show a strong dependence of NP uptake on concentration and incubation time. Our results demonstrate the potential of LA-ICP-MS providing insight into NP uptake and intracellular distribution dependent on experimental parameters. T2 - Erfahrungsaustausch LA-ICP-MS mit Bayer AG CY - Berlin, Germany DA - 11.09.2017 KW - LA-ICP-MS KW - Bioimaging KW - Nanoparticles KW - Cell PY - 2017 AN - OPUS4-42575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -