TY - JOUR A1 - Schweikhard, E. S. A1 - Kuhlmann, S. I. A1 - Kunte, Hans-Jörg A1 - Grammann, K. A1 - Ziegler, C. M. T1 - Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of halomonas elongata DSM 2581T JF - Biochemistry N2 - The halophilic bacterium Halomonas elongata takes up the compatible solute ectoine via the osmoregulated TRAP transporter TeaABC. A fourth orf (teaD) is located adjacent to the teaABC locus that encodes a putative universal stress protein (USP). By RT-PCR experiments we proved a cotranscription of teaD along with teaABC. Deletion of teaD resulted in an enhanced uptake for ectoine by the Transporter TeaABC and hence a negative activity regulation of TeaABC by TeaD. Atranscriptional regulation viaDNA binding could be excluded. ATP binding to native TeaD was shown by HPLC, and the Crystal structure of TeaD was solved in complex with ATP to a resolution of 1.9 A ° by molecular replacement. TeaD forms a dimer-dimer complex with one ATP molecule bound to each monomer, which has a Rossmann-like R/β overall fold. Our results reveal an ATP-dependent oligomerization of TeaD, which might have a functional role in the regulatory mechanism of TeaD. USP-encoding orfs, which are located adjacent to genes Encoding for TeaABC homologues, could be identified in several other organisms, and their physiological role in balancing the internal cellular ectoine pool is discussed. KW - Universal stress protein KW - Ectoine KW - Transporter TeaABC PY - 2010 DO - https://doi.org/10.1021/bi9017522 SN - 1520-4995 SN - 0006-2960 VL - 49 IS - 10 SP - 2194 EP - 2204 AN - OPUS4-37682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -