TY - JOUR A1 - Nehring, R. A1 - Palivan, C.G. A1 - Moreno-Flores, S. A1 - Mantion, Alexandre A1 - Tanner, P. A1 - Toca-Herrera, J.L. A1 - Thünemann, Andreas A1 - Meier, W. T1 - Protein decorated membranes by specific molecular interactions JF - Soft matter N2 - Here we characterize new metal-functionalized amphiphilic diblock copolymers, developed for both surface and solution molecular recognition applications. Polybutadiene-block-poly(ethylene oxide) copolymers functionalized with nitrilotriacetic acid and tris(nitrilotriacetic acid) were complexed with nickel(II) to obtain coordination sites for oligohistidine residues of model proteins. Mixtures of functionalized polymers with the respective non-functionalized block copolymers self-assemble in aqueous solution into vesicular structures with a controlled density of the metal end-groups on their surface. In solution, binding of His6-tagged green fluorescent protein (EGFP) and red fluorescent protein (RFP) to the vesicle surface was quantified by fluorescence correlation spectroscopy. Small-angle X-ray scattering indicates an increase of the membrane thickness by 2-3 nm upon protein binding. Block copolymer monolayers at the air-water interface and on solid support served as a model system to characterize the protein-decorated membranes by Brewster angle microscopy and AFM. High resolution AFM of solid-supported, hydrated monolayers indicates that the proteins form densely packed and partially ordered arrays with the cylindrically shaped EGFP molecules lying flat on the surface of the films. KW - Amphiphilic copolymer KW - Metal centers KW - His-tag proteins KW - Molecular recognition PY - 2010 DO - https://doi.org/10.1039/c002838j SN - 1744-683X VL - 6 SP - 2815 EP - 2824 PB - RSC Publ. CY - Cambridge AN - OPUS4-21564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -