TY - CONF A1 - Köppe, Enrico A1 - Schukar, Vivien A1 - Hofmann, Detlef A1 - Westphal, Anja A1 - Sahre, Mario A1 - Gong, Xin A1 - Basedau, Frank A1 - Bartholmai, Matthias A1 - Beck, Uwe T1 - Magnetic field detection with an advanced FBG-based sensor device N2 - A high-performance fiber Bragg grating-based (FBG) sensor device for the detection of small magnetic fields has been developed. Based on a smart multilayer coating exposed over the physical length of the FBG, magnetic fields exhibited by rotating machine parts, power generators or current cable can easily be detected, analysed and evaluated. Consequently, this innovative, in-process and non-contact inspection method leads to an increase in quality and reliability of high-performing machine parts, devices and cables. The basic physical concept is based on a magnetostrictive multilayer coating system that strains the high-resolution FBG element. Subsequently, a fixed relationship between induced magnetic field and wavelength change of the FBG element forms the characteristic sensitivity curve. Intensive tests regarding the characterisation of the magnetic field FBG sensor have been carried out and its performance has been evaluated. T2 - EuroSensors XXX 2016 CY - Budapest, Hungary DA - 04.09.2016 KW - Strain KW - Fiber Bragg grating KW - Magnetostriction KW - Magnetic field PY - 2016 AN - OPUS4-37364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -