TY - GEN A1 - Kage, Daniel T1 - Dye-stained lifetime-encoded polymer microbeads for application in time-resolved flow cytometry N2 - Flow cytometry is a standard analytical tool for biological research and in medical applications. There are different requirements triggering recent device and method development depending on the desired field of application. One trend is governed by the need for an increasing number of simultaneously detectable codes, i.e., fluorescent labels. The other one focuses on cost-effective methods and development of miniaturized, portable devices. Fluorophore encoding is usually based on spectral encoding. However, this approach is hampered by, e.g., spectral crosstalk. Additionally, the sensitivity of fluorescence intensity measurements to fluctuations in excitation light intensity and dye concentration limits the achievable number of detection channels. Moreover, spectral multiplexing typically requires several costly excitation light sources. Lifetime multiplexing and the discrimination between different encoding fluorophores and carrier beads based on their fluorescence decay kinetics could present an innovative alternative. Encoded beads, i.e., beads with lifetime codes corresponding to the surface chemistry, have been employed to evaluate the feasibility of this approach with a custom designed flow cytometer equipped with a pulsed light source and a fast detector for time-resolved measurements in a flow. In a first step, we used steady state and time-resolved photoluminescence measurements for the spectroscopic characterization of micrometer-sized dye-stained PMMA beads. Subsequently, the potential use of these microbeads for flow cytometry applications was analyzed with a prototype flow cytometer with lifetime detection. With our proof-of-concept studies, we could demonstrate that lifetime discrimination and simultaneous readout of a ligand fluorescence signal for analyte quantification is feasible with a set of dye-stained polymer microbeads at single wavelength excitation. These studies are expected to pave the road for new applications of fluorescence lifetime multiplexing in time-domain flow cytometry and bead-based assays in general. T2 - DBS/EBS 2017 CY - Potsdam, Germany DA - 20.03.2017 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/39996 AN - OPUS4-39996 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany