TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin T1 - Real time observation of crystallization and growth of corrosion products by energy dispersive X-ray diffraction N2 - Ferritic-martensitic high temperature alloys are widely used as boiler tube and heat exchanger materials in combustion based power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres which lead to a change of the material properties and a further degradation of the material. To date corrosion analytics mainly proceeds via the use of various microscopic techniques and the analysis of the corrosion products after the reaction is completed. Comprehensive efforts have been made to study high temperature corrosion by the use of environmental SEM’s or in-situ TEM technologies. The here presented work will show a different approach to study high temperature gas corrosion in a multiple gas atmosphere by energy dispersive X-ray diffraction (EDXRD). For this technique high energetic white X-ray radiation (10-100 keV) was used as radiation source instead of conventional monochromatic radiation. It enables us to study crystallization procedures on short and medium time scales (1 min < t < 24 h) and the collection of Bragg-Signals of the phases of interest as a function of process time. Their occurrence can directly be correlated with thermodynamic and kinetic parameters. A special designed corrosion reactor was used to combine high temperature gas corrosion experiments with the collection of diffraction patter. The crystallization and reaction paths for oxide and sulfide formation was followed in-situ on Fe-Cr and Fe-Cr-Mn model alloys in a hot SO2 containing (T=650 °C) atmosphere. T2 - Gordon Research Conference on High Temperature Corrosion and Protection of Materials CY - New London, NH, USA DA - 09.07.2017 KW - Corrosion KW - In situ diffraction KW - Crystallization PY - 2017 AN - OPUS4-44717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -