TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite JF - Polymer Degradation and Stability N2 - A phosphorous soybean-oil–based polyol was derived via epoxidation and ring opening reaction as an alternative to petrochemical-based polyol for the synthesis of flexible polyurethane foams (FPUFs). 5-wt.% and 10-wt.% of expandable graphite (EG) were added to further improve flame retardancy. The mechanical properties (tensile strength and compression stress) of the foams were investigated. Thermogravimetric analysis (TGA) coupled with Fourier-transform infrared (FTIR) were conducted to evaluate the pyrolysis; limiting oxygen index (LOI), UL 94 and cone calorimeter were performed to analyze the fire performance of the foams; smoke density chamber was used to investigate the smoke released during burning. When 10-wt.% of EG was used, the flame retardancy of the foams was much enhanced due to the synergistic effect between phosphorus and EG. The char yield was three times higher (54wt.%). The fire load MARHE approached 100 kWm−2, half of the value expected for a superposition. The combination of phosphorous polyols and EG is proposed as strategy for future flame retarded FPUFs. KW - Phosphorous soybean-oil–based polyol KW - Flexible polyurethane foam KW - Expandable graphite KW - Flame retardancy KW - Smoke measurement PY - 2021 DO - https://doi.org/10.1016/j.polymdegradstab.2021.109656 SN - 0141-3910 VL - 191 SP - 9656 PB - Elsevier Ltd. AN - OPUS4-52907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -