TY - CONF A1 - Asadujjaman, Asad A1 - Wagner, Sabine A1 - Rurack, Knut A1 - Bertin, Annabelle T1 - Endowing nanoparticles with orthogonal functionalities via a core/shell/shell architecture N2 - Dual orthogonal functionalities in a single material is highly desirable in many fields such as bio-imaging, sensing, coating or diagnostic and therapy. However, a precise and controlled approach to prepare two different functionalities is still a challenging task. Herein, we show the simple preparation method for the synthesis of dual-functional hybrid core/shell/shell nanoparticles consisting of a silica core with a fluorescent and a thermoresponsive polymeric layer. Silica core particles were first coated by a fluorescent layer using surface- nitiated reversible addition-fragmentation chain transfer (RAFT) polymerization. The fluorescent silica nanoparticles were then completely enclosed within a switchable protective coating made of thermoresponsive poly(N-isopropylacrylamide) via RAFT polymerization. Thermoresponsive poly(N-isopropylacrylamide) is known to change its properties according to the surroundings temperature in a reversible and controllable way (LCST behavior). The successful preparation of well-defined dual-functional hybrid core/shell/shell nanoparticles was shown by scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, while their fluorescence and thermoresponsive properties were confirmed by fluorescence spectroscopy and dynamic light scattering measurements, respectively. T2 - Macromolecular Colloquium 2016 CY - Freiburg, Germany DA - 24.02.2016 KW - Polymer KW - thermoresponsive PY - 2016 AN - OPUS4-35473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -