TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Synergy in flame-retarded epoxy resin - Identification of chemical interactions by solid-state NMR JF - Journal of Thermal Analysis and Calorimetry N2 - The potential synergists aluminium diethylphosphinate (AlPi), boehmite (AlO(OH)) and melamine polyphosphate (MPP) were compared in flame-retardant epoxy resin (EP)/melamine poly(magnesium phosphate) (S600). The pyrolysis, the fire behaviour as well as the chemical interactions in the gas and condensed phases were investigated by various methods. Flammability was investigated by cone calorimeter and oxygen index (OI). The thermal and thermo-oxidative decomposition were studied by thermogravimetric analysis coupled with FTIR spectrometer. The special focus was on the Investigation of structural changes in the condensed phase via solid-state NMR of 27Al and 31P nuclei. By the comparison of epoxy resin with only one additive or with S600 in combination with AlPi, AlO(OH) or MPP, it was possible to calculate the synergy index. The best performance in terms of fire behaviour was observed for EP/S600/MPP with a PHRR (Peak heat release rate) of 208 kW m-2 due to slight synergy. In the case of THE (total heat evolved), clear synergy occurred for EP/S600/AlPi and EP/S600/AlO(OH). By solid-state NMR, different phosphates and aluminates were identified, indicating the chemical interactions between S600 and AlPi, AlO(OH) or MPP. The systematic multi-methodical approach yielded insight into the synergistic effects in the flame-retarded epoxy resin. KW - Synergy KW - Epoxy resin KW - Flame retardancy KW - Melamine poly(magnesium phosphate) KW - Solid-state NMR PY - 2017 DO - https://doi.org/10.1007/s10973-016-5934-4 SN - 1388-6150 SN - 1588-2926 VL - 128 IS - 1 SP - 141 EP - 153 PB - Springer AN - OPUS4-39298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -