TY - JOUR A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter A1 - Schönbucher, A. T1 - Numerical prediction of safety distances from large pool fires of organic peroxides JF - 40th International annual conference of ICT N2 - Organic peroxides are energetic substances liable to decompose due to exothermic reactions when exposed to uncontrolled temperature, contamination, confinement and quantity. Their safe storage and transportation are the prime concern and chemical industries and regulating authorities. Their accidental release may and most often lead to shape of a pool. In present study, safety distances from such large pool fires (diameter d = 3.4 m) of organic peroxides are numerically predicted by solving the reactive, 3-D time dependent Navier-Stokes equations with reliable assumptions. The present model is validated against the data on buoyant turbulent diffusion flames. The safety distances predicted by simulation assume three regions in a fully developed fire i.e. hot spot, luminous zone and a flame surface. The time averaged data of temperatures of these regions lead to better estimation of irradiances against the measured data. A developed sphere analogy method (for a special class of organic peroxides) for maximum surface emissive power prediction is also verified. T2 - 40th International annual conference of ICT - Energetic Materials - Characterisation, Modelling and Validation CY - Karlsruhe, Germany DA - 2009-06-23 KW - Organic peroxides KW - Safety distances KW - Navier-stokes equations KW - Irradiance KW - Surface emissive power PY - 2009 SN - 0722-4087 SP - 88-1 - 88-14 PB - DWS Werbeagentur und Verlag GmbH CY - Pfinztal (Berghausen) AN - OPUS4-19599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -