TY - JOUR A1 - Dreßler, Martin A1 - Röllig, Mathias A1 - Schmidt, Martin A1 - Maturilli, A. A1 - Helbert, J. T1 - Temperature distribution in powder beds during 3D printing JF - Rapid prototyping journal N2 - Purpose – This purpose of this paper is to report about the temperature distribution in metal and ceramic powder beds during 3D printing. The differing powders are thoroughly characterized in terms of thermal conductivity, thermal diffusivity, emissivity spectra and density. Design/methodology/approach – The temperature distribution was measured in a 3D printing appliance (Prometal R1) with the help of thin thermocouples (0.25 mm diameter) and thermographic imaging. Temperatures at the powder bed surface as well as at differing powder bed depths were determined. The thermal conductivity, thermal diffusivity and emissivity spectra of the powders were measured as well. Numerical simulation was used to verify the measured temperatures. Findings – The ceramic powder heated up and cooled down more quickly. This finding corresponds well with numerical simulations based on measured values for thermal conductivity and thermal diffusivity as well as emissivity spectra. An observed color change at the metal powder has only little effect on emissivity in the relevant wavelength region. Research limitations/implications – It was found that thermocouple-based temperature measurements at the powder bed surface are difficult and these results should be considered with caution. Practical implications – The results give practitioners valuable information about the transient temperature evolution for two widely used but differing powder systems (metal, ceramic). The paramount importance of powder bed porosity for thermal conductivity was verified. Already small differences in thermal conductivity, thermal diffusivity and hence volumetric heat capacity lead to marked differences in the transient temperature evolution. Originality/value – The paper combines several techniques such as temperature measurements, spectral emissivity measurements, measurements of thermal conductivity and diffusivity and density measurements. The obtained results are put into a numerical model to check the obtained temperature data and the other measured values for consistency. This approach illustrates that determinations of surface temperatures of the powder beds are difficult. KW - Rapid prototypes KW - Printers KW - Heat transfer KW - Powders KW - Ceramics KW - Metals PY - 2010 DO - https://doi.org/10.1108/13552541011065722 SN - 1355-2546 VL - 16 IS - 5 SP - 328 EP - 336 PB - MCB University Press CY - Bradford AN - OPUS4-22002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -