TY - CONF A1 - Kowalski, Kurt A1 - Hulshoff, S.J. A1 - Ströer, P. A1 - Withag, J. A1 - Genot, A. A1 - Morgans, A.S. A1 - Bake, Friedrich A1 - Venner, K. A1 - Sanders, M.P.J. A1 - Hirschberg, Lionel T1 - Entropy-patch choked-nozzle interaction: quasi-steady-modeling-regime limits probed T2 - 30th AIAA/CEAS Aeroacoustics Conference (2024) N2 - Indirect combustion noise due to the interaction of flow inhomogeneities with a choked combustion-chamber exit is an important cause of combustion instability in solid rocket motors. Moreover, it is believed to be an issue in electrical-power generation turbines and aero-engines. If these flow inhomogeneities are essentially characterized by the fluid having a locally appreciablydifferent thermodynamic state, the acoustic response engendered by its interaction with the combustion-chamber exit is commonly referred to as entropy noise. In this paper, dedicated numerical-simulation results of entropy-patch choked-nozzle interactions are presented. Two types of entropy patches were considered: rectangular slugs and circular spots. Moreover, analytical-model-based analysis, of said simulation results, is presented. Based on said analysis, the authors posit the existence of three modeling regimes: the quasi-steady-modeling regime, the blended-physical-effects regime, and the inertial-modeling regime. T2 - 30th AIAA/CEAS Aeroacoustics Conference (2024) CY - Rome, Italy DA - 04.06.2024 KW - Entropy-Nozzle Interaction KW - Indirect Combustion Noise KW - Entropy Noise PY - 2024 DO - https://doi.org/10.2514/6.2024-3113 SP - 1 EP - 23 AN - OPUS4-60174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -