TY - CONF A1 - Pfennig, A. A1 - Wolf, Marcus A1 - Wiegand, Reiner A1 - Bork, Claus-Peter T1 - New in-situ measurement technique to determine corrosion fatigue in components and pipes under cyclic load T2 - MWWD & IEMES 2012 (Proceedings) N2 - In the field of water pipelines, geothermal energy production as well as carbon capture and storage technology (CCS) materials have to provide a high resistance to corrosion and mechanical stress. The combination of cyclic load and corrosive aqueous environment leads to corrosion fatigue of pipes and components (e.g. pumps) and thus inevitably to the reduction of the lifetime of these components. To estimate the reliability of components from adjusted in-situ-laboratory experiments a corrosion chamber was designed and tested with CO2 saturated corrosive aqueous media flowing at a steady rate. Unique feature of this special chamber is its installation directly onto the sample and thus providing flexible usability in almost every testing machine. This allows simultaneous mechanical loading of the sample, operation at temperatures up to 100 °C and exposure to fluid flow of corrosive liquids and gases. The lifetime reduction of AISI 420C (X46Cr13, 1.4034) is demonstrated at T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2. S-N plots, micrographic-, phase-, fractographic- and surface analysis were applied to obtain sustainable information on the corrosion fatigue behavior. Maximum number of cycles (here 12.5 x 106 cycles to failure) is reached at σa =173 MPa. No typical fatigue strength exists and passive corrosion fatigue may be identified as failure cause. T2 - MWWD & IEMES 2012 CY - Budva, Montenegro DA - 22.10.2012 KW - Corrosion fatigue KW - Corrosion chamber KW - S-N-plots KW - Steel KW - In-situ experiment PY - 2012 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/28569 AN - OPUS4-28569 SN - 978-9944-5566-6-8 SP - 1 EP - 8 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany