TY - JOUR A1 - Weritz, Friederike A1 - Schaurich, Dieter A1 - Wilsch, Gerd T1 - Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared-region JF - Spectrochimica acta B N2 - Laser-induced breakdown spectroscopy has been employed for the investigation of the sulfur and chlorine content of building materials. Both, chloride and sulfate ions are major damaging species affecting the stability and lifetime of a structure. Chlorine and sulfur are mostly detected in the VUV and the NIR. In case of building materials the main elements like calcium or iron have many strong spectral lines over the whole spectral range, so that trace elements can only be detected in spectral windows unaffected from these lines. With regard to a preferably simply, robust against dust and vibrations and portable setup only the NIR spectral features are used for civil engineering applications. Most detectors, mainly CCD cameras have rapidly decreasing quantum efficiency in the NIR. Also the quantum efficiency of the photocathode of CCD-Detectors with image intensifier is decreasing in the NIR. Different CCD-detectors were tested with respect to high quantum efficiency and high dynamic range, which is necessary for simultaneous detection of weak spectral lines from trace elements and intense spectral lines from main elements. The measurements are made on reference samples consisting of cement, hydrated cement, cement mortar and concrete with well-defined amounts of the trace elements. Experimental conditions are chosen for an optimum intensity of the trace element spectral lines. The detector systems are compared by limit of detections and the signal to noise ratio. KW - LIBS KW - Sulfur KW - Chlorine KW - NIR KW - Building materials KW - Concrete KW - Detector comparison PY - 2007 DO - https://doi.org/10.1016/j.sab.2007.10.017 SN - 0584-8547 SN - 0038-6987 VL - 62 IS - 12 SP - 1504 EP - 1511 PB - Elsevier CY - Amsterdam AN - OPUS4-16507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -