TY - CONF A1 - Krütt, Enno A1 - Weise, Frank A1 - Meng, Birgit ED - Ye, G. ED - Yuan, Y. ED - Romero Rodriguez, C. ED - Zhang, H. ED - Savija, B. T1 - Fatigue induced degradation in pavement concrete and its effect on the alkali-silica reaction T2 - RILEM PRO 125 - Proceedings of the 4th International Conference on Service Life Design for Infrastructures (SLD4) N2 - In recent years the German motorway network has seen an increase in the occurrence of damage to concrete road surfaces that can be attributed to the alkali-silica reaction (ASR). In view of the often drastically reduced service life of road surfaces due to ASR, research activity in this field has notably increased. Alongside preventative measures in concrete technology i.e. the usage of low-alkali cements, the main research focus up to now has been on the development of performance-oriented testing procedures for ASR prevention. The effects of mechanicallyinduced damage resulting from cyclic traffic and climatic loading have previously not been taken into consideration. The assessment of the myriad degradation and transport processes necessary for an understanding of these effects requires close interaction between experiments and corresponding multi-scale models. This contribution is focused on the experiments utilizing innovative testing techniques. The research is founded on a series of fatigue tests performed on large-scale beams with simultaneous tracking of the degradation process using non-destructive evaluation methods. Subsequently, smaller test specimens were extracted from the predamaged beams for further experiments. These experiments included investigation of the influence of fatigue-induced cracks on moisture and alkali transport. Subsequent storage of the small-scale test specimens, with and without cyclic pre-damage, in an ASR-conducive environment then provided initial findings on the influence of fatigue-induced degradation on the ASR. The results show that the degradation process can be well observed with the test Setup developed for the fatigue experiments. Further, a small but noticeable increase of mass Transport due to fatigue-induced degradation was measured, which correspondingly indicated an increased ASR damage potential. T2 - 4th International Conference on Service Life Design for Infrastructures (SLD4) CY - Delft, The Netherlands DA - 27.08.2018 KW - Fatigue KW - Pavement KW - ASR KW - Concrete PY - 2018 SN - 978-2-35158-213-8 SP - 112 EP - 121 PB - RILEM Publication S.A.R.L. CY - Paris, France AN - OPUS4-46197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -