TY - JOUR A1 - Koch, Bernd A1 - Skrotzki, Birgit T1 - Strain controlled fatigue testing of the metastable Beta-titanium alloy Ti-6.8Mo-4.5Fe-1.5Al (Timetal LCB) JF - Materials science and engineering A N2 - The present work covers the mechanical behaviour of Timetal LCB under fatigue loading and utilizes transmission electron microscopy (TEM) to study the associated microstructural evolution. Fatigue specimens were taken out of LCB wire made for automotive suspension spring manufacturing in a solution treated as well as an additionally aged state. Uniaxial fatigue tests were carried out in total strain control with R = 0.1. Solution treated specimens tested at 3% and 4% maximum total strain showed a saturating force response, which differed from all other total strain controlled tests, and a distinct fracture behaviour. In addition, an increase of the dynamic Young's modulus is observed under these test conditions and in this material state. These findings are interpreted as a deformation induced precipitation of nanosize α- or ω-phase. In the aged state, the α-phase carries the major part of deformation work, noticeable by distinct α-substructures in fatigued specimen states. KW - Titanium alloys KW - Fatigue KW - Transmission electron microscopy KW - Fracture PY - 2011 DO - https://doi.org/10.1016/j.msea.2011.04.031 SN - 0921-5093 SN - 1873-4936 VL - 528 IS - 18 SP - 5999 EP - 6005 PB - Elsevier CY - Amsterdam AN - OPUS4-23731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -