TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants T2 - Journal of Nanoparticle Research N2 - The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the Degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method. PB - Springer KW - Nanocatalysts KW - Photo-Fenton oxidation KW - Wastewater KW - Bisphenol A degradation KW - Environment KW - Mitigation PY - 2015 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/38758 AN - OPUS4-38758 UR - http://link.springer.com/article/10.1007/s11051-015-3290-0 VL - 17 IS - 12 SP - 476 (1) EP - 476 (10) AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany