TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Schmidt, Wolfram A1 - Rogge, Andreas A1 - Kühne, Hans-Carsten T1 - Performance of rice husk ash as an alternative binder in a modified cementitious system with added superplasticizers JF - Cement and Concrete Composites Journal N2 - Rice husk as (RHA) is an eco-friendly material, which can be used as a supplementary cementitious material (SCM) in cement and concrete. Due to the high water demand for the material, superplasticizers (SPs) are essential to improve the performance. However, the interaction between the SPs and RHA systems is limited. This paper investigates the interaction of the binders with three SPs, i.e. two polycarboxylate ethers (PCEs) and one lignosulphonate (LS). The investigations are performed on blended systems of mortar containing various percentages of RHA and limestone powder (LSP). LSP is used in this research to improve the workability of the mortar. The results from the zeta potential (ZP) shows that the SPs are extremely dependent on the pH of the suspension. At higher pH values such as in a cementitious system, the ZP becomes less negative indicating that the ions in the suspension interact with the carboxyl groups in the backbone of the polymers thus reducing the surface charges of the SP. The mini-slump flow shows that the workability of the blended mortar systems is significantly improved with the addition of SPs. LS systems with increasing RHA is observed to have similar workability as the control mix over time. The compressive strength test results show increased strength for all mortar specimens with added RHA and LSP at later ages. KW - Compressive strength KW - Rice husk ash KW - Superplasticizers KW - Zeta potential KW - Workability PY - 2017 DO - https://doi.org/10.1016/j.cemconcomp.2017.07.014 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 83 SP - 202 EP - 208 PB - Elsevier Ltd. AN - OPUS4-42602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -