TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in presence of diffusible hydrogen, i.e. hydrogen-assisted cracking (HAC) generally increases. HAC is a result of the critical interaction of local microstructure, mechanical load and hydrogen concentration. In existing standards for welding of HSLA steels, recommendations like working temperatures and dehydrogenation heat treatment (DHT) are given to limit the amount of introduced hydrogen during welding. The recommendations are based on investigations with conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g. the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, hence, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed. The influence of different weld seam opening angles, heat input, working temperature and DHT was investigated. The results show that weldments with narrow groove contained increased diffusible hydrogen amount. Hydrogen concentration has been reduced by decreasing both the heat input and working temperature. Hydrogen free weldments were only achieved via subsequent DHT after welding. Furthermore, hydrogen distribution was experimentally determined across the weld seam thickness in HSLA GMA welded multi-layer welds for the first time. T2 - 71st IIW Annual Assembly and International Conference: Commission II-A CY - Nusa Dua, Bali, Indonesia DA - 15.07.2018 KW - Hydrogen KW - GMAW KW - High-strength steels KW - Heat control KW - Heat treatment PY - 2018 AN - OPUS4-45622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -