TY - CONF A1 - Schartel, Bernhard A1 - Dittrich, Bettina A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Mülhaupt, R. T1 - Born in fire to kill fire – graphene in flame retardant nanocomposites N2 - Carbon black, multiwall carbon nanotubes, expanded graphite, multilayer graphene and graphene are compared comprehensively as flame retardants in nanocomposites to each other. Different polymer matrices are investigated as well as changing the concentration of the carbon fillers. Distinct combinations of graphene with conventional flame retardants are investigated. Phenomena and mechanisms are identified controlling the pyrolysis and fire behavior. The viscosity of the nanocomposites and their thermal conductivity as well are dramatically changed compared to the polymers influencing the time to ignition and flammability. During pyrolysis graphene functioned as inert filler and formed a residual protective layer reducing the peak heat release rate. The influence of graphene on the effectivity of various conventional halogen-free flame retardants depends strongly on their modes of action. The addition of a small amount of graphene to an intumescent flame retardant poly(propylene) led to an improvement in the cone calorimeter. The further increase of graphene content gained deceleration of swelling and a decrease of the final height of the intumescent layer. In combination with metal hydroxide, 1 wt% graphene closed the macroscopic surface structure and densified the microscopic structure of the fire residues tremendously. Due to this improved residue structure, metal hydroxides and graphene showed synergistic cooperation in terms of oxygen index and UL 94 classification (HB/V-1 to V-0). T2 - Rudolstädter Kunststoff-Tag CY - Rudolstadt, Germany DA - 12.10.2016 KW - Graphene KW - Nanocomposite KW - Flame retardant KW - Flammability KW - Pyrolysis PY - 2016 AN - OPUS4-38116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -