TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends JF - Polymer degradation and stability N2 - The influence of nano-dispersed 5 wt.% boehmite (AlOOH) and 5 wt.% AlOOH combined with bisphenol A bis(diphenyl phosphate) (BDP) in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) + poly(tetrafluoroethylene) (PTFE), and 1 wt.% AlOOH with and without BDP, resorcinol bis(diphenyl phosphate) (RDP), and triphenyl phosphate (TPP), on PC/ABS + PTFE has been investigated. Possible flame retardancy mechanisms are revealed. Thermogravimetry (TG) and evolved gas analysis (TG-FTIR) are used to study pyrolysis, a cone calorimeter applying different external heat fluxes is used to investigate fire behaviour, and LOI and UL 94 are used to investigate flammability. Fire residues were investigated using ATR-FTIR. Adding 5 wt.% AlOOH decreases the peak heat release rate, as also has been reported for polymer nanocomposites with other layered structures. AlOOH releases water, and adding 5 wt.% AlOOH crucially influences thermal decomposition by enhancing the hydrolysis of PC and of BDP. For PC/ABS + PTFE + BDP + 5 wt.% AlOOH, the formation of AlPO4, for instance, results in antagonistic effects on the charring of PC + BDP, whereas synergy is observed in LOI. When only 1 wt.% AlOOH is added to the PC/ABS + PTFE with and without BDP, RDP and TPP, respectively, no significant influence is observed on thermal decomposition, UL 94, LOI or performance in the cone calorimeter. KW - Aryl phosphates KW - Boehmite KW - PC/ABS KW - Flammability KW - Nanocomposites KW - Flame retardant PY - 2008 DO - https://doi.org/10.1016/j.polymdegradstab.2008.01.002 SN - 0141-3910 SN - 1873-2321 VL - 93 IS - 3 SP - 657 EP - 667 PB - Applied Science Publ. CY - London AN - OPUS4-17121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -