TY - GEN A1 - Schadow, Florian T1 - Focusing air-coupled ultrasonic transducers based on ferroelectrets N2 - Rising importance of composite lightweight structures in aircraft and automobile industries increases the demand on reliable non-destructive testing methods for these structures. Air-coupled ultrasonic testing emerged to suit these requirements as it does not require any liquid coupling medium. In conventional air-coupled ultrasonic transducers, matching layers are used in order to decrease the impedance mismatch between transducer and air. Matching layers can be omitted by using ferroelectrets, which are charged cellular polymers having ferroelectric and piezoelectric properties. Especially a low Young’s modulus, low density and low sound velocity of cellular polypropylene (cPP) are properties being required for well-matched air-coupled ultrasonic transducers. In our contribution we show recent enhancements of cPP transducers resulting in focused sound fields and thus improved lateral sensitivity. The influence of different transmitter apertures was evaluated using measurements of the emitted sound field. Further we show a transmission of a test specimen of carbon-fiber-reinforced plastic (CFRP) containing artificial damages. Results of focused transducers were compared to planar ferroelectret transducers, as well as to conventional air-coupled transducers. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - Air-coupled ultrasonic testing KW - Ferroelectrets KW - Cellular polypropylene KW - Focused sound fields KW - Carbon-fiber-reinforced plastic PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/36562 AN - OPUS4-36562 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany