TY - JOUR A1 - Kalinka, Gerhard A1 - Sahin, M. A1 - Schlögl, S. A1 - Wang, J. A1 - Kaynak, B. A1 - Mühlbacher, I. A1 - Ziegler, W. A1 - Kern, W. A1 - Grützmacher, H. T1 - Tailoring the interfaces in glass fiber-reinforced photopolymer composites T2 - Polymer N2 - The present work provides a comparative study on the interface and adhesion properties of surface modified single glass fibers embedded in an acrylate matrix. To facilitate a covalent bonding at the fibermatrix interface, the fibers are functionalized with selected organosilanes that comprise either passive (unsaturated C¼C bonds of methacrylate moieties) or photoactive functionalities (photocleavable bis(acyl)phosphane oxide groups). Immobilization of the functional silanes is carried out by a classic silanization reaction involving a condensation reaction across the surface hydroxyl groups of the inorganic glass fibers. The change of the physico-chemical properties of the fibers due to desizing and subsequent surface modification is monitored by X-ray photoelectron spectroscopy and zeta potential measurements. In addition, scanning electron microscopy is used to follow the changes in surface morphology. After the modification step, the desized and modified single fibers are embedded in a photocurable acrylate resin formulation. By performing single fiber pull-out tests, maximum pull-out force, friction strength and apparent interfacial shear strength are determined as a function of the coupled silanes. The results reveal that the attached organosilanes lead to a significant increase in adhesion strength, whilst the performance of the photo-cleavable organosilane is superior to the passive methacryl-functional derivative. PB - Elsevier Ltd. CY - New York KW - Photocleavable organosilanes KW - Fiber-matrix interface KW - Photopolymer composites KW - Single fiber pull-out test KW - Surface modification PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/44784 AN - OPUS4-44784 SN - 0032-3861 VL - 141 SP - 221 EP - 231 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany