TY - JOUR A1 - Brieger, C. A1 - Melke, J. A1 - van der Bosch, N. A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - de Oliveira Guilherme Buzanich, Ana A1 - Krishna Kayarkatte, M. A1 - Schoeckel, A. A1 - Roth, C. T1 - A combined in-situ XAS-DRIFTS study unraveling adsorbate induced changes on the Pt nanoparticle structure T2 - Journal of Catalysis N2 - The adsorption behavior of Platinum nanoparticles was studied for the as-received catalyst (under inert gas), under hydrogen and CO atmosphere using our newly designed in-situ cell. X-ray Absorption Spectroscopy (XAS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiments were performed simultaneously with high data quality. Structural information and the type of adsorbate could be revealed via Extended X-ray Absorption Fine Structure (EXAFS) analysis, Dl X-ray Absorption Near Edge Structure analysis (Dl XANES) and in-situ DRIFTS. The as-received catalyst showed sub-surface oxygen and O(n-fold). Under CO atmosphere only CO(atop) was found. Reversible adsorbate induced changes of the Pt nanoparticle structure were derived from changes in the PtAPt coordination number and the corresponding bond distance. Under reducing conditions (H2, CO) a significant increase in both values occurred. Temperature dependent desorption of CO revealed a gradual shift from PtACO to PtAO. Reoxidation was clearly assigned to strong metal support interaction from the SiO2 support. PB - Elsevier Inc. CY - Philadelphia, Pennsylvania, USA KW - X-ray absorption spectroscopy KW - DRIFTS KW - XANES KW - CO adsorption KW - Platinum KW - Strong metal support interaction KW - Silica support KW - Adsorbates KW - Infrared spectroscopy PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/35815 AN - OPUS4-35815 IS - 339 SP - 57 EP - 67 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany