TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the hot cracking susceptibility of laser welds with the controlled tensile weldability test JF - The journal of strain analysis for engineering design N2 - Due to significant developments over the last decades, laser beam welding has become a well-established industrial process offering high processing speeds and causing low component distortions. But an important issue currently preventing its intense use, especially in the energy or plant construction sector where high alloy steels are applied, concerns hot crack formation. Although considerable advances in understanding hot cracking mechanisms have been made, most of the known influencing factors are metallurgical in character. The thermo-mechanical effects are barely considered or quantified. Up to the present, there exist numerous hot cracking tests that were however conceived for welding methods other than laser beam welding. Considering the special features of the laser welding process, such as high cooling rates and the narrow process zone, results obtained with other welding techniques and test procedures cannot be transferred to laser beam welding. In this study, the laser beam weldability of various stainless steels was examined in terms of their susceptibility to hot cracking by means of the controlled tensile weldability test, which was proven to be suitable for use in conjunction with CO2 laser welding. This test allows the application of tensile strain at a variable fixed cross-head speed transverse to the welding direction. Full and partial penetration bead-on-plate welds were produced. In a first attempt to determine the impact of the applied external strain on the local transient strains and strain rates near the weld pool, an optical system was used to measure the backside surface of partial penetration welds. The results showed the influence of the strain and the strain rates on hot crack formation. Furthermore, a classification of the studied austenitic, duplex and ferritic stainless steels according to the established test criteria (critical strain and cross-head speed) was conducted. KW - Laser beam welding KW - CO2 laser KW - Hot cracking KW - Stainless steels KW - Critical strains KW - Strain rates KW - Hot cracking test KW - Controlled tensile weldability test PY - 2012 DO - https://doi.org/10.1177/0309324712462120 SN - 0309-3247 SN - 2041-3130 VL - 47 IS - 8 SP - 587 EP - 599 PB - Sage CY - London AN - OPUS4-27281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -