TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Fluid flow simulation of the influence of a steady magnetic field on the weld pool dynamics in deep penetration laser beam welding of aluminium JF - Journal of iron and steel research international N2 - A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved with the finite element differential equation solver COMSOL Multiphysics. The magnetic field was aligned perpendicularly to the welding direction. The main objective of these simulations was to estimate the critical value of the magnetic field needed to suppress convective flows in the weld pool during high-power (up to 20 kW) laser beam welding of aluminum alloys with up to 20 mm deep weld pool. It reveals that steady magnetic fields with corresponding Hartmann numbers Ha^2 ~ 10^4 based on the half-width of the weld pool can effectively suppress convective flows in the weld pool. Moreover, the typically occurring wineglass-shape of the weld cross section caused by thermo-capillary flow is weakened. KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection KW - Hartmann effect PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 467 EP - 470 PB - Ed. Board CY - Beijing AN - OPUS4-26914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -