TY - JOUR A1 - Weber, Gert A1 - Thommes, H. A1 - Gaul, H. A1 - Hahn, O. A1 - Rethmeier, Michael T1 - Mechanical properties of weldbonded joints of advanced high strength steels JF - Journal of adhesion science and technology N2 - In lightweight car body shell mass production, due to requirements on vehicle weight reduction and carbon dioxide emissions, joining of advanced high strength steels (AHSS) with different joining procedures and especially hybrid bonding techniques is becoming more and more important. One of these hybrid bonding techniques is the combination of resistance spot welding and adhesive bonding called weldbonding. One of the important advantages of weldbonded joints in comparison to resistance spot welded joints are the enhanced mechanical properties. To guarantee sufficiently high quality conditions regarding the strength of the weldbonded joints, the influences of the applied adhesive systems and of different base metal combinations are studied. This is carried out for both non-corrosive and corrosive environments and for the choice of different joining parameters settings. In particular, the mechanical behaviour of the weldbonded joints is investigated under quasi-static, impact and fatigue loads. Furthermore, the energy absorption of the weldbonded joints for both non-corrosive and corrosive environments is studied. It is shown that the weldbonded joints possess higher mechanical strengths in all load cases (quasi-static, impact and fatigue). Corrosive attack affects weldbonded joints, and the quasi-static strength is reduced. Resistance spot welded joints are not affected by the corrosive attack, but even after several weeks of corrosive attack, the quasi-static strength of weldbonded joints remains higher than that of resistance spot welded joints. KW - Weldbonded joints KW - Corrosion KW - Mechanical strength KW - Fracture behaviour KW - Fatigue KW - Crash behaviour PY - 2011 DO - https://doi.org/10.1163/016942411X580090 SN - 0169-4243 SN - 1568-5616 VL - 25 IS - 18 SP - 2369 EP - 2389 PB - VNU Science Press CY - Utrecht AN - OPUS4-24513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -